Solutions:
Edexcel IAL / AS Mathematics – Pure Mathematics 1
Complete Step-by-Step Solutions
Question 1: Simplify
1(a)
(2a√7b)2
= 22 × a2 × (√7b)2
= 4a2 × 7b
= 28a2b
1(b)
(2a2∛6b)3
= 23 × a6 × (∛6b)3
= 8a6 × 6b
= 48a6b
1(c)
(1 − √7) / (3 − √7)
Multiply numerator and denominator by (3 + √7):
= [(1 − √7)(3 + √7)] / (9 − 7)
= (−4 − 2√7) / 2
= −2 − √7
Question 2: Simultaneous Equations
y + 3x + 1 = 0 ⇒ y = −3x − 1
Substitute into y2 + 11x2 + 3x = 0:
(−3x − 1)2 + 11x2 + 3x = 0
9x2 + 6x + 1 + 11x2 + 3x = 0
20x2 + 9x + 1 = 0
(5x + 1)(4x + 1) = 0
x = −1/5 or x = −1/4
Solutions:
(−1/5, −2/5) and (−1/4, −1/4)
Question 3
f′(x) = √x − 1/√x
Integrate:
f(x) = (2/3)x3/2 − 2x1/2 + C
Use point (9, 5):
5 = 18 − 6 + C ⇒ C = −7
f(x) = (2/3)x3/2 − 2x1/2 − 7
Question 4
(x2 − 10) / (5√x)
= (1/5)x3/2 − 2x−1/2
4(a)
A = 1/5, p = 3/2, B = −2, q = −1/2
4(b)
dy/dx = (3/10)x1/2 + x−3/2
4(c)
∫y dx = (2/25)x5/2 − 4x1/2 + C
Question 5: Graph Transformations
Original maximum A(−4, 9), minimum B(2, −3)
(a) y = 2f(x): A(−4, 18), B(2, −6)
(b) y = f(x) − 9: A(−4, 0), B(2, −12)
(c) y = f(x + 2): A(−6, 9), B(0, −3)
(d) y = f(2x): A(−2, 9), B(1, −3)
Question 6
y = 2x2 + 9x1/3 + (x3 − 6)/(4x1/2)
dy/dx = 4x + 3x−2/3 + (5/8)x3/2 + (3/4)x−3/2
Question 7
Distinct roots ⇒ discriminant > 0
k2 − 4k − 16 > 0
k = 2 ± 2√5
k < 2 − 2√5 or k > 2 + 2√5
Question 8
Substitute x = 1, y = q:
p = 2/q and q = 7
p = 2/7, q = 7
Question 9
y = cos(x − π/4), 0 ≤ x ≤ 2π
Intercepts:
y-axis: (0, √2/2)
x-axis: (3π/4, 0), (7π/4, 0)
Question 10
Line: y = 3x − 5
Intersection with 2x − 3y + 6 = 0
x = 3, y = 4
P(3, 4)

